Continuous Random Variables

A random variable X can take an uncountable range of values.

The Expect value (Mean, Average, Centroid) can be calculated with:

Discrete random variables:

$$E[X] = \sum xp(x)dx$$

Continuous random variables:

$$E[X] = \int_{-\infty}^{\infty} x p(x) dx$$

The Variance is the spread around the mean, the distance from X to the average value

$$Var(X) = E[X^2] - E[X]^2$$

The Standard Deviation represents the distance between each unit.

$$Std = \sqrt{Var(x)}$$

The Covariance measures the relationship between two random variables

$$CoV(X,Y) = E[(X - E[X])(Y - E[Y]) = E[XY] - E[X]E[Y]$$

Uniform Distribution:

This distribution gives the same probability p to all values of a random variable X, between a range [a,b]. Example a dice theorically has the same probability in all its posibble values. Then

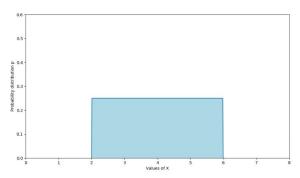
$$P(X = x) = \begin{cases} p; x \in [a, b] \\ 0; x \notin [a, b] \end{cases}$$

Equation:

$$p(x) = \frac{1}{b-a}$$

The probability distribution integral should be normalized to one.

$$\int_{a}^{b} p(x)dx = 1$$
$$\int_{2}^{6} p(x)dx = \int_{2}^{6} \frac{1}{6 - 2} dx = 0.25x \Big|_{2}^{6} = 1$$



Cumulative Distribution:

This distribution gives more probability to the highest values of X.

A random value between a and b has to main that the sum of all the probabilities is 1.

$$\int_{a}^{b} p(x)dx = 1$$

We could use a triangle as a cumulative distribution:

$$p(x)dx = m(x - a)$$

Where a is the intersection with the x axis, and m is the slope of the line

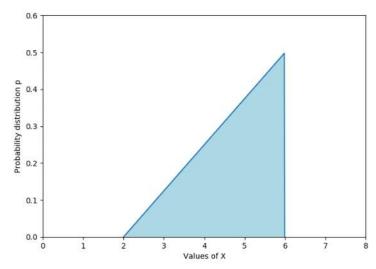
$$\int_{a}^{b} p(x)dx = \int_{a}^{b} m(x-a)dx = 1$$

$$\frac{m(x-a)^{2}}{2} \Big|_{a}^{b} = \frac{m(b-a)^{2}}{2} = 1$$

$$m = \frac{2}{(b-a)^{2}}$$

Example for a distribution with a=2 and b=6:

$$m = \frac{2}{16} = 0.125$$

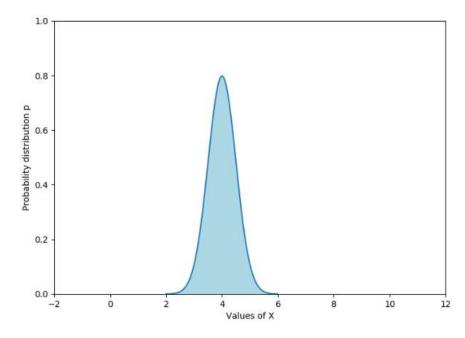


Gaussian Distribution:

It is a continuous distribution with a high peak in the middle. It can be denoted as: $X \sim N(\mu, \sigma)$

The PDF (Probability Density Function) is defined as:

$$p(x; \mu; \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$



State of a Robot

The general state of a robot can be expressed as:

$$p(x_t|x_{0:t-1},z_{1:t-1},u_{1:t})$$

Where:

 x_t : State of robot at time t

 $x_{0:t-1}$: Previous robot states

 $z_{1:t-1}$: Previous robot measurements

 $u_{1:t}$: Previous and actual actions of robot

A Markov Model is used to represent the system, so the future robot states won't depend on the old previous states since the beginning. Then the new equation will be:

$$p(x_t|x_{t-1},z_{t-1},u_t)$$

Belief distribution:

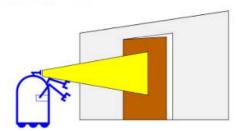
The internal state of a robot can be modeled as a belief distribution:

$$bel(x_t) = p(x_t, z_{1:t}, u_{1:t})$$

This will take into account the previous measurements and actions. Measurement will decrease the uncertainty, and action will increase it.

Example of the effect of a measurement z

Imagine a robot in front of a door.



Given a measure z obtained by the robot (z could be the data from the laser for example), what is the belief that the door is open?

- We are looking for $P(open|z = senses \ open)$
- The door has two possible states: {open, closed} that are equally possible:

•
$$P(open) = P(closed) = 0.5$$

- The sensor of z gives the probabilities:
 - $P(z = senses \ open|open) = 0.6$, $P(z = senses \ closed|open) = 0.4$
 - P(z = senses open|closed) = 0.3.

$$P(z = senses \ closed | closed) = 0.7$$

· Evidence:

$$P(z) = P(z|open) \cdot P(open) + P(z|closed) \cdot P(closed)$$

Finally, with Bayes' rule:

$$P(open|z = senses \ open)$$

$$= \frac{P(z = senses \ open|open) \cdot P(open)}{P(z = senses \ open)}$$

$$= \frac{P(z = senses \ open|open) \cdot P(open)}{P(z = senses \ open|open) \cdot P(open)}$$

$$+ P(z = senses \ open|closed) \cdot P(closed)$$

$$= \frac{0.6 \cdot 0.5}{0.6 \cdot 0.5 + 0.3 \cdot 0.5} = \frac{0.6}{0.9} = 0.67$$

The robot has a 67% belief that the door is open if the measurement z was that it sensed the door was open.