Probability Theory
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Continuous Random Variables

A random variable X can take an uncountable range of values.

The Expect value (Mean, Average, Centroid ) can be calculated with:
Discrete random variables:

E[X] = Yxp(x)dx

Continuous random variables:

E[X] = fooxp(x)dx

The Variance is the spread around the mean, the distance from X to the average value
Var(X) = E[X?] — E[X]?

The Standard Deviation represents the distance between each unit.

Std = \/Var(x)

The Covariance measures the relationship between two random variables

CoV(X,Y) = E[(X — E[X])(Y — E[Y]] = E[XY] — E[X]E[Y]

Uniform Distribution:
This distribution gives the same probability p to all values of a random variable X, between
arange [a,b] . Example a dice theorically has the same probability in all its posibble values. Then

. _|px€lab]
P(X =x) = {O;x ¢ [a,b]
Equation:

p(x) = —

The probability distribution integral should be normalized to one.

pr(x)dx =1
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Cumulative Distribution:
This distribution gives more probability to the highest values of X.
A random value between a and b has to main that the sum of all the probabilities is 1.

fbp(x)dx =1

We could use a triangle as a cumulative distribution:
p(x)dx = m(x —a)
Where a is the intersection with the x axis, and m is the slope of the line
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Example for a distribution with a=2 and b=6:
2
m=o-= 0.125
0.5 1

Probabiiity distribution p
o o
w &

e
N

0.1

0.0

0 1 2 3 a 5 6 7 8
Values of X
Gaussian Distribution:
It is a continuous distribution with a high peak in the middle. It can be denoted as:

X~N(u,0)
The PDF (Probability Density Function) is defined as:
(i10) = e
px;u;,0) = e 20
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State of a Robot
The general state of a robot can be expressed as:

Basic Math Page 2



p(xelXo.t-1) Z1:6-1, Us:t)

Where:

x;:State of robot at time t

Xo.t—1: Previous robot states

Z4.+—1: Previous robot measurements

uq.;: Previous and actual actions of robot

A Markov Model is used to represent the system, so the future robot states won't depend on the old
previous states since the beginning. Then the new equation will be:

p(xelxe—1,2Ze—1,Us)

Belief distribution:

The internal state of a robot can be modeled as a belief distribution:

bel(x;) = p(x¢, Z1.¢, Us:t)

This will take into account the previous measurements and actions. Measurement will decrease the
uncertainty, and action will increase it.

Example of the effect of a measurement z

Imagine a robot in front of 3 door.

Given a measure z obtained by the robot (z could be the data from
the laser for example), what is the belief that the door is open?

« We are looking for P{open|z = senses open)
« The door has two possible states: {open , closed} that are
equally possible:
» P(open) = P(closed) = 0.5
« The sensor of z gives the probabilities:
» P(z = senses open|open) = 0.6,
P(z = senses closed|open) = 0.4
» P(z = senses open|closed) = 0.3,
FP(z = senses closed|closed) = 0.7
« Evidence:
P(z) = P(z|open) - P{open) + P(z|closed) - P(closed)

Finally, with Bayes' rule;

F(open|z = senses open)

P(z = senses open|open) - P(open)

P(z = senses open)

P(z = senses open|open) - P(open)

- P(z = senses open|open) - P(open)
+ P(z = senses open|closed) - P(closed)
06-05 06

= = — = 0.67
0.6-05+03-0.5 0.9

The robot has a 67% belief that the door is open if the measurement
z was that it sensed the door was open.
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